Evaluation of Combining Several Statistical Methods with a Flexible Cutoff for Identifying Differentially Expressed Genes in Pairwise Comparison of EST Sets

نویسندگان

  • Angelica Lindlöf
  • Marcus Bräutigam
  • Aakash Chawade
  • Olof Olsson
  • Björn Olsson
چکیده

The detection of differentially expressed genes from EST data is of importance for the discovery of potential biological or pharmaceutical targets, especially when studying biological processes in less characterized organisms and where large-scale microarrays are not an option. We present a comparison of five different statistical methods for identifying up-regulated genes through pairwise comparison of EST sets, where one of the sets is generated from a treatment and the other one serves as a control. In addition, we specifically address situations where the sets are relatively small (micro 2,000-10,000 ESTs) and may differ in size. The methods were tested on both simulated and experimentally derived data, and compared to a collection of cold stress induced genes identified by microarrays. We found that combining the method proposed by Audic and Claverie with Fisher's exact test and a method based on calculating the difference in relative frequency was the best combination for maximizing the detection of up-regulated genes. We also introduced the use of a flexible cutoff, which takes the size of the EST sets into consideration. This could be considered as an alternative to a static cutoff. Finally, the detected genes showed a low overlap with those identified by microarrays, which indicates, as in previous studies, low overall concordance between the two platforms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting differentially expressed genes in multiple tag sampling experiments: comparative evaluation of statistical tests.

The comparison of several statistical methods currently used for detection of differentially expressed genes was attempted both by a simulation approach and by the analysis of data sets of human expressed sequence tags, obtained from UniGene. In the simulated mixed case, mimicking a situation close to reality, the general chi(2) test was unexpectedly the most efficient in multiple tag sampling ...

متن کامل

The Application of a Non-Radioactive DD-AFLP Method for Profiling of Aeluropus lagopoides Differentially Expressed Transcripts under Salinity or Drought Conditions

Aeluropus lagopoides is a salt and drought tolerant grass from Poaceae family, distributed widely in arid regions. There is almost no information about the genetics or genome of this close relative of wheat that stands harsh conditions of deserts. Differential Display Amplified fragment length polymorphism (DD-AFLP) led to the improvement of a non-radioactive method for which many parameters we...

متن کامل

Identifying differentially expressed genes in meta-analysis via Bayesian model-based clustering.

A Bayesian model-based clustering approach is proposed for identifying differentially expressed genes in meta-analysis. A Bayesian hierarchical model is used as a scientific tool for combining information from different studies, and a mixture prior is used to separate differentially expressed genes from non-differentially expressed genes. Posterior estimation of the parameters and missing obser...

متن کامل

Diagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets

With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...

متن کامل

Comparison of methods for identifying differentially expressed genes across multiple conditions from microarray data

Identification of genes differentially expressed across multiple conditions has become an important statistical problem in analyzing large-scale microarray data. Many statistical methods have been developed to address the challenging problem. Therefore, an extensive comparison among these statistical methods is extremely important for experimental scientists to choose a valid method for their d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2008